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Abstract— We suggest that to enable effective human-robot
interaction, robots should be able to interact in a way that is
natural to and preferred by humans. Using human-compatible
representations and reasoning mechanisms should help in de-
veloping skills which support effective human-robot interaction.
In this paper, we present two studies that examine a critical
human-robot-interaction component: perspective-taking. We find
that when a person asks a robot to perform a task with some
ambiguity to the robot, the person prefers the robot to either
ask for clarification or take the person’s perspective and act
appropriately.

I. INTRODUCTION

Imagine a robot collaborating with a person: the person is
in charge, while the robot is the helper. The robot may be in
charge of providing different tools to the person and generally
helping out [1]. How should this collaboration proceed? We
know that people use a great deal of spatial perspective-taking
when working with another person; the speaker taking another
person’s point of view, or forcing the listener to take their own
point of view [2]–[4]. We analyzed a large corpus of data from
a training mission of astronauts collaborating on an assembly
task; the brief discussion in Table I is typical of the types of
conversations that the astronauts make while working together.

TABLE I
EXAMPLE OF ASTRONAUTS WORKING TOGETHER. THEY ARE WORKING

TO UNFASTEN SOME CABLES THAT ARE SOMEWHAT TANGLED AND

TRYING TO DETERMINE THE BEST ORDER FOR REMOVING THEM.

Bob John Perspective
What do you recommend
for taking them all off?

Let’s start with J78 object-centered
Uh-huh

Which is the one that’s addressee-centered
most forward [of you]

Uh-huh, most forward egocentric

Notice that the first astronaut, John, suggests a plan of
action (starting from a specific cable) and takes the perspective
of the second astronaut. The second astronaut, Bob, then
acknowledges the plan from his own point of view. An in-
depth analysis of 4000 utterances of these astronauts showed
that approximately 25% of the time perspective-taking was
needed [4]. From this type of data, we suggest that if robots

will be able to collaborate with people in these types of tasks,
they must be able to not only understand their own perspective
but also be able to take another person’s perspective.

Fig. 1. When told “Give me the wrench,” the robot needs to take the
perspective of the person to determine which wrench the astronaut has referred
to.

Clearly, the ability to take another person’s perspective
could be extremely useful, especially when there is ambiguity.
For example, Figure 1 shows a situation where perspective-
taking could be immediately useful. The robot and the person
are facing each other; the robot can see that there are two
wrenches on the table, but the astronaut only sees one wrench
because the second wrench is occluded by an obstacle. When
the astronaut says, “Robot, give me the wrench,” the meaning
of the phrase “the wrench” is ambiguous for the robot because
it knows of two wrenches. The phrase is unambiguous to the
astronaut, because he only knows about one wrench.

Other researchers have suggested that when people are in
this type of situation they use the principles of least effort
(people get things done in the easiest possible manner) and
joint salience (people use what is salient to each other given
the context) [5] and therefore, they would immediately reach
for the wrench that both robot and person could see. If the
robot could take the perspective of the astronaut, it would
see that only one wrench is in the astronaut’s field of view



and could therefore also surmise that ”the wrench” must
refer to the wrencth that both speaker and listener could see.
Even in this rudimentary scenario, perspective-taking would
immediately enhance the human-robot interaction.

It could be, however, that people would not trust a robot to
deal with such ambiguities; that they would prefer the robot to
explicitly ask any time there is ambiguity of this type. Taken to
extremes, this “Always ask” policy would become extremely
irritating, but one would expect that with the increase in
complexity of the task, even humans would need to ask for
additional assistance.

In the remainder of this paper, we present an experiment
that explores people’s preferences toward a robot taking their
own perspective. In addition, we present a discussion of a
system description of our own robot that is able to take the
perspective of others.

II. EXPERIMENT

Our goal in this experiment was to explore the situation
where a robot could take the perspective of another person,
and then act on that knowledge.

A. Method

In this experiment, we were primarily interested in prefer-
ence rather than raw performance; if people were not comfort-
able with a robot being able to take their perspective and then
acting on that information, performance would be a irrelevant
issue. Toward this end, we filmed different scenarios between
a human (the speaker) and a robot (the listener) and asked
participants to rank-order the scenarios by preference.

A second issue we explore in this experiment is whether
peoples’ preference changes if they observe the scenario from
a listener’s point of view or from a speaker’s point of view.

We used an isomorph of the ”Give me the wrench” scenario
above: since our robots do not have hands or manipulators, we
had the person ask the robot to go to a large traffic cone in
the room.

1) Participants: Twenty-four participants from the Naval
Research Laboratory were asked to make decisions about
which scenario they preferred. Twelve participants were placed
in the ”Speaker (human) perspective” condition and twelve
participants were placed in the ”Listener (robot) perspective”
condition. Order was counterbalanced and randomized by
block: all possible orders were presented to the same number
of participants to minimize order effects.

2) Materials: All scenarios were filmed in our robot labo-
ratory. For all conditions, the person (speaker) could see only
one traffic cone, while the robot (listener) could see two differ-
ent cones (similar to the “wrench” example described earlier).
For both perspective conditions, the materials consisted of an
orienting scenario and three different “action” scenarios. The
orienting scenario for both conditions showed the person’s
location and the stated command (“Go to the cone”). The three
different action scenario conditions presented different ways
that the robot could go to the cone. In the “Ask” scenario,
the robot asked “Which cone?” and in response the person

Fig. 2. Display as shown to the participants. Top movie shows the orienting
scenario, and the bottom three movies show possible action scenarios that the
subject will rank, “Ask,” “Visible,” and “Hidden” in random order.

pointed and gestured to the only cone he could see, and the
robot went to that cone. In the “Visible” scenario, the robot
went to the cone that both the robot and the person could
see. In the “Hidden” scenario, the robot went to the cone that
only the robot could see. Participants were shown the different
action scenario films in block-randomized order. An example
of the display shown to the participants is shown in Figure 2.

The only difference between perspective conditions was
the perspective from which the the interaction was shown.
For the listener perspective condition, all movies were from
the listener’s perspective (e.g., from the robot’s perspective).
Participants viewed the scenarios from a camera located just
behind the robot, as seen in Figure 3(b). For the speaker
perspective condition, all movies were from the speaker’s
perspective (e.g., from the human’s perspective). Participants
in this condition viewed the scenario from a camera positioned
behind the human, as in Figure 3(a). So while in both
conditions, the listener (robot) could see two cones and the
speaker (human) could only see one, the participants’ view of
the cones dependent on the perspective condition they were
shown.

3) Procedure: Participants sat at a computer desk. They
were told that they were going to see a person giving a
command to the robot and then the robot would perform
the action in one of three possible ways. After viewing the
orienting and action scenarios, the participant rank ordered
the different scenarios with 1 being the most preferred and
3 being the least preferred, based on the question, “Which
scenario would you prefer the robot to do?”. Participants could
see any of the scenarios as many times as they liked.

After finishing the task participants were debriefed.

B. Results and Discussion

Because this experiment used rankings, non-parametric sta-
tistical tests were used. The results are summarized in Figure 4.

First, we examined the differences between perspective con-
ditions. There were no differences of rank orderings between



(a) Speaker’s perspective (b) Listener’s perspective

Fig. 3. Experimental setup for the two different perspective conditions.

the listener and speaker, χ2(2) = 2.29, p > 0.3.

Fig. 4. Mean rankings by condition. Each bar represents the average ranking
for that condition. A rank of 1 is the most preferred; a rank of 3 is the least
preferred. The error bars represent standard error of the mean.

Second, we examined the differences between the
different action scenarios. An omnibus Friedman’s test
showed that there was a significant difference between ac-
tion scenarios from the perspective of both the speaker
(human) χ2(2) = 14, p < 0.001 and the listener (robot),
χ2(2) = 18.7, p < 0.001. However, this result only shows that
there is a difference somewhere within the action conditions; it
does not show which conditions are different from each other.
Therefore, we performed a post-hoc comparison between ac-
tion conditions using the procedure discussed in [6], which is a
Bonferroni-type adjustment for multiple comparisons. Results
of this analysis showed that there were no statistical differ-
ences between the Ask and Visible conditions, all p > 0.2,

while the Hidden condition was statistically different for both
the speaker, p < 0.05 and listener, p < 0.05 conditions. Thus,
participants thought that when there was some ambiguity in
the robot’s response, it was acceptable to either ask the person
for clarification or to simply take the person’s perspective and
act appropriately. Going to a hidden cone that the person had
no knowledge of was clearly inappropriate.

It is evident, however, from looking at Figure 4 that the Ask
condition is a bit preferred than the Visible condition. Even
though we had enough statistical power to show that the hidden
condition was a poor choice, it could be that we simply did not
run enough participants (i.e., we did not have enough statistical
power) to find differences between the Ask and the Visible
condition. Since participants in the two perspective conditions
(listener and speaker) did not differ in their responses, we com-
bined them into one dataset (N=24) and re-ran the analysis.
The omnibus Friedman test again showed a difference between
action conditions, χ2(2) = 32.3, p < 0.001, and the post-hoc
comparison showed that the Ask and Visible conditions were
again statistically indistinguishable, while the Hidden condi-
tions differed from both conditions, p < 0.05. Thus, it seems
that the small numeric difference between Ask and Visible is
merely a slight preference rather than an overwhelming lack
of trust on the robot’s part. Since we believe that people will
ask for assistance under complex situations and/or situations
with extreme ambiguity, it is clear that this scenario is not
complex enough or too ambiguous to force people to ask for
assistance or prefer the robot to confirm the choice.

C. Experiment Discussion

Participants appreciated that under ambiguous situations, a
robot helper could either ask for assistance or take the person’s
perspective and act accordingly. This finding held true from
both the speaker’s and listener’s perspective.

The remainder of the paper will discuss a robotic system
that takes another person’s spatial perspective when there is
ambiguity.

III. SPATIAL PERSPECTIVE TAKING ON A ROBOT

It is clear that if humans are to work as peers with robots
in shared space, the robot must be able to understand the



natural human tendency to switch perspectives and to use
different frames of reference. To create robots with these
capabilities, we develop computational cognitive models of
skills such as perspective-taking, and then use them as rea-
soning mechanisms for the robot. This approach has several
benefits. First, a natural and intuitive interaction results in
reduced cognitive load. Second, more predictable behavior
engenders trust. Finally, more understandable decisions allow
the human to recognize and more quickly repair mistakes in
the interaction. [7]

A. Computational Cognitive Model of Perspective Taking

In our latest work, we used Polyscheme [8] to imple-
ment a computational cognitive model of perspective-taking.
Polyscheme is a cognitive architecture aims to model how
humans integrate multiple methods of representation, reason-
ing, and problem solving. Polyscheme has previously been
integrated into a robotic architecture to provide symbolic
reasoning and planning algorithms while maintaining the flex-
ibility and robustness of reactive control systems [7], [9].

Given the position of the human and the robot, the positions
of objects in the environment including the one to which the
speaker referred to, the model, using mental simulations of
the environment from different perspectives, is able to resolve
ambiguity.

B. Perspective-Taking Task Examples

Using this model we have demonstrated a robot being
able to solve several related perspective-taking tasks [4].
Videos of a robot and human in these tasks can be seen at
“http://www.nrl.navy.mil/aic/iss/aas/CognitiveRobots.php”.

In the first task, the robot is asked to ”Go to the Cone”
in a set up that is identical to the human subject experiment
described earlier in Section II-A. Following the principle of
least effort and joint salience described earlier, the perspective-
taking model will allow the robot to move to the traffic cone
that both the human and the robot can see.

In the second task, we demonstrate the generality of the
perspective-taking model. In this task, there is only a single
traffic cone that the human can see, but which is occluded
from the robots perspective. The human asks the robot to ”Go
to the cone.” The robot looks around and cannot detect a cone
from its perspective. However, the robot can determine that
there is a space that the human can see which it cannot see,
and so, using the model, determines that the traffic cone must
be in that area, and proceeds to look for the cone behind that
occluded space.

Notice that we assume that the human is benevolent and not
trying to fool the robot. We are only concerned at this stage
of the research in the pure spatial perspective taking and not
additional factors that may influence the robots behavior.

C. Robot Implementation

Whereas the computational cognitive model performs the
high-level perspective taking, the actual mobility of the robot
is handled by a navigation, localization and mapping system

[10]. After the cognitive model determines where the robot
should move, the mobility system handles the navigation to
that location without collision.

The robot perception is handled with a map of the en-
vironment that the robot builds on the fly and with color
tracking. The map is used for localization, path planning,
navigation and collision avoidance, and gets its data from
sonar and a structured light range finder. The color tracking is
used to detect the traffic cones and to identify the occluding
book shelves in the environment, and its data comes from an
inexpensive web camera.

The robot is able to handle multi-modal interactions, using
a combination of speech and gestures [11], although for these
scenarios, only a simple utterances is required.

The robot platform itself is a Nomadic Technology Nomad
200, which has a three-wheeled synchronous steering base and
a separately steerable turret with the sensors.

IV. CONCLUSION

We believe that to enable effective human-robot interaction,
the robots should be able to interact in a way that is natural
to the humans. Using similar representations and reasoning
mechanisms should help in developing skills such as discussed
perspective-taking, that are important to effective human-robot
interaction.

Evidence suggests that humans use the principles of joint
salience and least effort, as suggested in [5], in order to
disambiguate and solve scenarios such as those presented here.
In this paper, we presented the results of an empirical study
that shows that in similar situations, humans will prefer a robot
to be able to take the person’s perspective to solve the task.

The results presented here, as well as the prior implemen-
tation of a model on a robot, are a first step towards robust,
natural human-robot interaction. Much work still remains. Our
models are of pure perspective taking. We assume the speaker
is benevolent and that there are no tricks. We do not consider
under what circumstances the task becomes complex enough
that using these principles is sufficient to avoid asking for
clarification. For example, the wrenches may be different in
some way that would affect the task at hand, and the listener
clearly should ask if he feels that the speaker should know
about the unseen wrench. In these cases we would also want
the robot to ask.

However, it is clear from our results that in many cases,
not asking is the right and expected choice, and we have
implemented a computational cognitive model that allows a
robot to reason from another person’s (or robot’s) perspective.
This skill is an important one for the robot to collaborate
naturally with human teammates.
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